Combinatorial Aspects of Multiple Zeta Values

نویسندگان

  • Jonathan M. Borwein
  • David M. Bradley
  • David John Broadhurst
  • Petr Lisonek
چکیده

Multiple zeta values (MZVs, also called Euler sums or multiple harmonic series) are nested generalizations of the classical Riemann zeta function evaluated at integer values. The fact that an integral representation of MZVs obeys a shuffle product rule allows the possibility of a combinatorial approach to them. Using this approach we prove a longstanding conjecture of Don Zagier about MZVs with certain repeated arguments. We also prove a similar cyclic sum identity. Finally, we present extensive computational evidence supporting an infinite family of conjectured MZV identities that simultaneously generalize the Zagier identity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shuffle Product Formulas of Multiple Zeta Values

Using the combinatorial description of shuffle product, we prove or reformulate several shuffle product formulas of multiple zeta values, including a general formula of the shuffle product of two multiple zeta values, some restricted shuffle product formulas of the product of two multiple zeta values, and a restricted shuffle product formula of the product of n multiple zeta values.

متن کامل

Combinatorial Remarks on the Cyclic Sum Formula for Multiple Zeta Values

The multiple zeta values are generalizations of the values of the Riemann zeta function at positive integers. They are known to satisfy a number of relations, among which are the cyclic sum formula. The cyclic sum formula can be stratified via linear operators defined by the second and third authors. We give the number of relations belonging to each stratum by combinatorial arguments.

متن کامل

The Algebra and Combinatorics of Shuffles and Multiple Zeta Values

The algebraic and combinatorial theory of shuffles, introduced by Chen and Ree, is further developed and applied to the study of multiple zeta values. In particular, we establish evaluations for certain sums of cyclically generated multiple zeta values. The boundary case of our result reduces to a former conjecture of Zagier.

متن کامل

A Combinatorial Identity of Multiple Zeta Values with Even Arguments

Let ζ(s1, s2, · · · , sk;α) be the multiple Hurwitz zeta function. Given two positive integers k and n with k 6 n, let E(2n, k;α) be the sum of all multiple zeta values with even arguments whose weight is 2n and whose depth is k. In this note we present some generating series for the numbers E(2n, k;α).

متن کامل

A note on poly-Bernoulli numbers and multiple zeta values

We review several occurrences of poly-Bernoulli numbers in various contexts, and discuss in particular some aspects of relations of poly-Bernoulli numbers and special values of certain zeta functions, notably multiple zeta values.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 5  شماره 

صفحات  -

تاریخ انتشار 1998